
Lab on Applied Database
Management Systems

Cursor
Management
and Triggers
SELF LEARNING MATERIAL

MCA

SEM - I (106)

UNIT-5 CURSOR MANAGEMENT AND TRIGGERS

TABLE OF CONTENTS

5.1	 Introduction
5.2	 Explicit and Implicit cursors
5.3	 Declaring cursor variables
5.4	 Working with cursors
5.5	 Cursor For loops and Parametric cursors
5.6	 Triggers
5.7	 Types of triggers
5.8	 Summary
5.9	 Case Study
5.10	 Terminal Questions
5.11	 Answers
5.12	 Assignment
5.13	 References

Learning Objectives
•	 To define the meaning of cursors and triggers

•	 To learn about the usage of cursors and triggers

•	 To understand the parts and types of triggers

NOTES

01

5.1
Introduction

Cursors and triggers serve different purposes and are used in different
scenarios within a database. Cursors allow you to iterate through the rows
of a result set or a specific subset of data. This is useful when you need
to perform operations on individual rows sequentially, such as performing
calculations, updating values, or applying complex business logic. Cursors
provide mechanisms to control the position of the cursor, move forward or
backward through the rows, skip rows, or reposition the cursor based on
specific conditions.

Triggers can be used to enforce business rules and data integrity
constraints by validating the data before it is inserted, updated, or deleted
from a table. This ensures that only valid and consistent data is stored in
the database. Triggers allow you to implement complex business rules or
calculations that need to be automatically executed when specific data
manipulation events occur. This eliminates the need to manually perform
these operations in application code, ensuring consistency and reducing
redundancy.

NOTES

02

5.2
Explicit & Implicit Cursor

Explicit Cursors:

Explicit cursors are cursors that are explicitly
declared and utilized by developers to retrieve and
manipulate data from a result set in a controlled
manner. Developers have direct control over
explicit cursors and can define their behaviour.
Explicit cursors offer developers precise control
over traversing the result set and enable them to
perform row-level processing and manipulation.
They are commonly employed in procedural
languages like PL/SQL (used in Oracle) or T-SQL
(used in Microsoft SQL Server).

The steps involved in using an explicit cursor
generally include:

Declaration Opening Fetching Processing Closing

Fig 1: Steps involved in using Explicit Cursor

	● Declaration: The cursor is defined and associated with a specific SQL query.

	● Opening: The query is executed, and the result set is populated.

	● Fetching: Rows are retrieved one at a time from the result set.

	● Processing: Operations are performed on each fetched row individually.

	● Closing: The resources associated with the cursor are released.

Implicit Cursors:

In contrast, implicit cursors are cursors that are created and managed automatically
by the database system. They are utilized implicitly when executing SQL statements
in a program, without the need for explicit declaration by the developer. When an
SQL statement is executed without the use of an explicit cursor, the database
system automatically generates an implicit cursor and associates it with the
statement. The result set is accessed through this implicit cursor.

Implicit cursors are typically used for single-row queries or situations where
developers do not require fine-grained control over the result set. They are well-
suited for scenarios where only a single row is expected as the output, such as
retrieving a specific value from a table or performing simple data manipulation
operations.

Some definitions of cursors by different authors are given below:

“Cursors can be seen as a mechanism for processing query results one row at
a time.”

Tom Kyte

“Cursors are a powerful database programming technique that allows you to
loop through a set of rows and perform operations on each row individually”

Richard Walsh

CHECK YOUR PROGRESS

1.	 Implicit cursors eliminate the need for ___________ cursor declaration and
management.

2.	 Explicit cursors are commonly used in ___________ languages like PL/SQL
or T-SQL.

3.	 Developers can pass _________ to explicit cursors, allowing for dynamic
queries and result set filtering based on specific conditions or criteria.

4.	 With explicit cursors, developers have fine-grained control over traversing
and processing the result set. They can ______ and _____ rows individually,
allowing for complex row-level operations.

STUDY NOTE

With explicit cursors,
developers have
fine-grained control
over traversing and
processing the result
set. They can fetch
and manipulate rows
individually, allowing
for complex row-level
operations.

NOTES

03

Some definitions of cursors by different authors are given below:

“Cursors can be seen as a mechanism for processing query results one row at
a time.”

Tom Kyte

“Cursors are a powerful database programming technique that allows you to
loop through a set of rows and perform operations on each row individually”

Richard Walsh

CHECK YOUR PROGRESS

1.	 Implicit cursors eliminate the need for ___________ cursor declaration and
management.

2.	 Explicit cursors are commonly used in ___________ languages like PL/SQL
or T-SQL.

3.	 Developers can pass _________ to explicit cursors, allowing for dynamic
queries and result set filtering based on specific conditions or criteria.

4.	 With explicit cursors, developers have fine-grained control over traversing
and processing the result set. They can ______ and _____ rows individually,
allowing for complex row-level operations.

5.3
Declaring Cursor Variables

Declaring cursor variables is a feature available in database systems, allowing for
dynamic manipulation of cursors.

To declare a cursor in database programming, the syntax typically involves
specifying the name of the cursor and associating it with a select statement.

DECLARE Cursor_Name CURSOR FOR Select_Statement;

When using the DECLARE keyword, you define a cursor by providing a unique name
for the cursor. Following the cursor name, you can specify the select statement
that determines the result set associated with the cursor.

Cursor variables provide flexibility by enabling dynamic construction and execution
of queries. They allow developers to assign SQL statements to the cursor variable
at runtime, facilitating the manipulation of result sets. Cursor variables can also be
passed between program units or stored procedures, offering a powerful means
for further processing.

NOTES

04

Types of cursors:

Constrained and unconstrained cursor variables are two distinct types of cursor
variables that exhibit different behaviours and characteristics.

Cursors

Unconstrained
Cursors

Constrained
Cursors

Fig 2: Types of Cursors

Constrained Cursor Variables:

Constrained cursor variables are cursor variables that are bound to a specific cursor
type upon declaration. This type determines the structure and format of the result
set that the cursor variable can accommodate.

	● The cursor type can be explicitly specified using a cursor declaration or implicitly
inferred from a strongly typed REF CURSOR type.

	● Constrained cursor variables possess a fixed structure and can only hold result
sets that align with their designated cursor type.

	● They are advantageous in situations where the result set structure is known
and predictable, ensuring type safety and minimizing potential errors during
compilation or runtime.

Examples of constrained cursor variables include those based on strongly typed
REF CURSOR types or cursors declared using explicit SELECT statements with
specific column lists.

Unconstrained Cursor Variables:

Unconstrained cursor variables, alternatively known as weakly typed cursor
variables or generic cursor variables, lack an association with any particular cursor
type upon declaration. They offer greater flexibility but come with fewer compile-
time checks.

	● Unconstrained cursor variables have the ability to hold result sets with diverse
structures or column lists.

	● They are not restricted to a specific cursor type, thereby permitting the dynamic
accommodation of result sets with varying structures.

	● The actual structure of the result set is determined at runtime when the cursor
variable is assigned or opened using a query.

	● Unconstrained cursor variables provide increased flexibility but may introduce
potential runtime errors if the result set structure deviates from the expected
usage.

	● They prove useful in scenarios where the result set structure is subject to
change or remains unknown at the time of declaration.

CHECK YOUR PROGRESS

5.	 Cursor variables are commonly used when the _________ structure is
unknown or can vary.

6.	 Cursor variables can only be declared within stored procedures or functions,
not in standalone SQL statements.� [True/False]

7.	 Unconstrained cursor variables can only be used in procedural languages
and not in other programming paradigms.� [True/False]

8.	 Constrained cursor variables ensure type safety and prevent potential
runtime errors related to result set structure.� [True/False]

9.	 You are working on a reporting module that generates various types of
reports. The report structures are well-defined and consistent. Which type of
cursor variable would be more appropriate for this scenario?

Activity

You are developing a batch processing job that involves performing sequential
operations on a large dataset. The operations require iterating through the
dataset, applying business rules, and updating records in the database. Facilitate
a class discussion on which database construct would handle this efficiently.
Justify your answers.

NOTES

05

CHECK YOUR PROGRESS

5.	 Cursor variables are commonly used when the _________ structure is
unknown or can vary.

6.	 Cursor variables can only be declared within stored procedures or functions,
not in standalone SQL statements.� [True/False]

7.	 Unconstrained cursor variables can only be used in procedural languages
and not in other programming paradigms.� [True/False]

8.	 Constrained cursor variables ensure type safety and prevent potential
runtime errors related to result set structure.� [True/False]

9.	 You are working on a reporting module that generates various types of
reports. The report structures are well-defined and consistent. Which type of
cursor variable would be more appropriate for this scenario?

Activity

You are developing a batch processing job that involves performing sequential
operations on a large dataset. The operations require iterating through the
dataset, applying business rules, and updating records in the database. Facilitate
a class discussion on which database construct would handle this efficiently.
Justify your answers.

5.4
Working with Cursors

Opening a cursor:

When working with cursors in database programming, opening a cursor involves
executing a query and associating the result set with the cursor. It is the second
step in the cursor lifecycle.

Syntax:

OPEN Cursor_Name;

Fetching a cursor:

The third step in the cursor life cycle is to fetch the rows for performing the insertion,
deletion, and updation operations on the currently active tuple in the cursor. Use
a fetch statement, such as FETCH or FETCH INTO, to retrieve a row from the
cursor’s result set and store it in the declared variables.

Declaring and fetching is typically done in a loop, allowing you to fetch each row of
data one at a time until the entire result set has been processed.

NOTES

06

Declare

NO

Open Fetch Empty Close
Yes

Fig 3: Fetch statement in Cursor lifecycle

Closing a cursor:

Closing a cursor is an essential step in the cursor process, typically performed
when the cursor is no longer needed. To close a cursor in SQL, you can use the
following query:

CLOSE Cursor_Name;

By executing this query, you signal the database system to release the resources
associated with the cursor, freeing up memory and potentially releasing any locks
held by the cursor.

All the steps together are used as:

DECLARE

 my_cursor SYS_REFCURSOR; -- Declaration of a cursor variable

BEGIN

 OPEN my_cursor FOR

 SELECT * FROM employees; -- Opening the cursor variable

with a query

 -- Perform operations on the cursor variable...

 CLOSE my_cursor; -- Closing the cursor variable

END;

In the given code snippet, a cursor variable named ‘my_cursor’ is declared using
the ‘SYS_REFCURSOR’ type.

By utilizing the ‘OPEN’ statement, the cursor variable is associated with a specific
query, which retrieves data from the ‘employees’ table.

Consequently, the cursor variable is populated with the result set. Various operations
can be performed on the cursor variable within the code block.

Finally, the cursor variable is closed using the ‘CLOSE’ statement to free up any
associated resources.

CHECK YOUR PROGRESS

10.	 Opening a cursor involves ________ a query and associating the result set
with the cursor.

11.	 Closing a cursor is optional and does not affect the system resources or
memory usage.� [True/False]

12.	 Fetching a cursor into variables is done using a loop construct to fetch each
row sequentially until all rows are processed.� [True/False]

13.	 You are developing an inventory management system for a retail store.
The system needs to generate a report of all products that have low stock
levels. Why would you choose to use a cursor in this inventory management
system scenario?

NOTES

07

CHECK YOUR PROGRESS

10.	 Opening a cursor involves ________ a query and associating the result set
with the cursor.

11.	 Closing a cursor is optional and does not affect the system resources or
memory usage.� [True/False]

12.	 Fetching a cursor into variables is done using a loop construct to fetch each
row sequentially until all rows are processed.� [True/False]

13.	 You are developing an inventory management system for a retail store.
The system needs to generate a report of all products that have low stock
levels. Why would you choose to use a cursor in this inventory management
system scenario?

5.5
Cursor For Loops and Parametric
Cursors

Cursor FOR loops are a construct used in programming languages like PL/SQL
to iterate over the result set of a cursor. It simplifies the process of fetching and
processing data from a cursor.

Declare a Cursor:

First, you declare a cursor variable and associate it with a SELECT statement that
retrieves the desired data from a database table.

Cursor FOR Loop Syntax:

The Cursor FOR loop syntax is as follows:

FOR variable_name IN cursor_name LOOP

 -- Statements to process each row of data

END LOOP;

In this syntax, variable_name is a variable that holds the current row’s data during
each iteration of the loop. cursor_name refers to the previously declared cursor.

The Cursor FOR loop automatically opens the cursor, fetches rows from the result
set, and assigns them to the variable_name. It then executes the statements
within the loop for each row in the result set. Inside the loop, you can perform
operations and calculations on the fetched data using the variable_name. Once
all the rows have been processed, the Cursor FOR loop automatically closes the
cursor, releasing resources and freeing up memory.

NOTES

08

Using a Cursor FOR loop simplifies the iteration
process and eliminates the need for explicit
cursor opening, fetching, and closing operations.
It provides a concise and readable way to process
data from a cursor in a database.

Parametric cursors are a type of cursor in
database programming that allows for dynamic
and flexible query execution. Unlike standard
cursors that have a fixed query defined at
declaration, parametric cursors enable you to
change the query during runtime based on varying
conditions or user input.

	● Declaration: To declare a parametric cursor,
you define it with placeholders or variables in
the query portion of the cursor declaration. These placeholders will be replaced
with specific values at runtime.

	● Binding Values: Before opening the parametric cursor, you need to bind
specific values to the placeholders or variables used in the cursor query. The
values can come from user input, variables, or other sources.

	● Execution: After binding the values, you can open and execute the parametric
cursor. The cursor will use the bound values to generate a dynamic query based
on the provided input.

	● Fetching Data: Once the parametric cursor is open, you can fetch data from
the result set as you would with a standard cursor. The query executed by the
cursor will reflect the specific values bound to the placeholders.

	● Closing the Cursor: After processing the result set, you can close the
parametric cursor to release resources and free up memory.

CHECK YOUR PROGRESS

14.	 Cursor FOR loops can only be used with explicit cursors declared using the
DECLARE CURSOR statement.� [True/False]

15.	 Cursor FOR loops are only supported in specific database systems and
may not be available in all programming languages or database platforms.
� [True/False]

16.	 Parametric cursors provide a convenient way to handle exceptions and
errors that may occur during query execution.� [True/False]

17.	 Parametric cursors can only be used in procedural programming languages
like PL/SQL and not in _____ queries directly.

18.	 Parametric cursors are useful when you need to fetch data from _______
tables simultaneously.

Activity

You are building a reporting system that generates sales reports for different
regions. The report format and content vary based on the selected region.
To handle this requirement, you plan to use parametric cursors. How can
parametric cursors be useful in this scenario? Create the code to depict the
same. Compare your code with the other students in the class and analyse the
different approaches used.

STUDY NOTE

Parametric cursors
provide flexibility in
constructing queries
based on varying
conditions, allowing for
dynamic retrieval and
processing of data. They
are particularly useful
in scenarios where the
query criteria depend
on user input or runtime
conditions.

NOTES

09

Activity

You are building a reporting system that generates sales reports for different
regions. The report format and content vary based on the selected region.
To handle this requirement, you plan to use parametric cursors. How can
parametric cursors be useful in this scenario? Create the code to depict the
same. Compare your code with the other students in the class and analyse the
different approaches used.

5.6
Triggers

Triggers in databases are special types of stored procedures that are automatically
executed in response to specific events or actions occurring in the database.
Triggers are associated with database tables and are triggered by operations such
as INSERT, UPDATE, DELETE, or other database-related events.

	● Event-based Execution: Triggers are executed automatically when a predefined
event occurs in the database. These events can include data manipulation
operations like INSERT, UPDATE, or DELETE on a table, or even database-level
events such as database startup or shutdown.

	● Trigger Types: Triggers can be classified into two main types: “Before Triggers”
and “After Triggers.” Before triggers are executed before the associated event
takes place, allowing you to modify or validate data before it is modified in the
database. After triggers are executed after the associated event completes,
enabling you to perform additional actions or enforce constraints.

	● Business Logic Enforcement: Triggers are commonly used to enforce business
rules, data integrity constraints, or complex validation logic that cannot be easily
achieved through other means such as constraints or default values. They allow
you to implement custom logic to control or modify data changes.

	● Data Auditing and Logging: Triggers can
be used to track and log changes made to
specific tables or columns in the database.
This is particularly useful for maintaining an
audit trail or capturing historical data changes.

	● Cascading Actions: Triggers can initiate
cascading actions, where a trigger on one
table can cause operations on other related
tables. For example, an UPDATE trigger on
a parent table can trigger updates on child
tables to maintain data consistency.

STUDY NOTE

Triggers can help with
auditing and logging
changes by capturing
information about
the modified data
or triggering events,
providing an extra layer
of transparency and
accountability.

NOTES

10

	● Performance Considerations: While triggers provide powerful functionality,
they should be used judiciously due to their potential impact on database
performance. Poorly designed triggers with complex logic or inefficient queries
can lead to performance degradation.

	● Trigger Creation and Management: Triggers are typically defined and managed
using Data Definition Language (DDL) statements provided by the database
system. They can be created, altered, enabled, disabled, or dropped as needed.

Syntax of a trigger statement:

CREATE TRIGGER Trigger_Name

[BEFORE | AFTER] [Insert | Update | Delete]

ON [Table_Name]

[FOR EACH ROW | FOR EACH COLUMN]

AS

Set of SQL Statement

The trigger syntax starts with the declaration of a unique trigger name after the
CREATE TRIGGER keyword. Subsequently, the BEFORE or AFTER keyword is
used to specify the timing of the trigger event. Following this, the table name is
specified, indicating the table on which the trigger will be applied.

The trigger can be defined as either row-level or statement-level, determining
whether it operates on individual rows or the entire result set of the triggering
event. Finally, the trigger body consists of SQL statements that define the actions
to be performed when the trigger event occurs.

“BEFORE” triggers are executed before the triggering event, “AFTER” triggers
are executed after the triggering event, and “INSTEAD OF” triggers are executed
instead of the triggering event for views.

The trigger body consists of the SQL statements or procedural code that defines
the actions to be performed when the trigger is executed. It can include queries,
data manipulation statements (e.g., INSERT, UPDATE, DELETE), conditional
statements, or other database operations.

Within the trigger body, there are certain operations that are restricted or not
allowed. These restricted parts include:

Modifying the
triggering table

Specific data
manipulation
operations

Limited
functionality of
Transactional

Control
Statements

Recursive trigger
execution

Fig 4: Restrictive operations on triggers

	● Modifying the Triggering Table: It is generally advised to avoid modifying the
table on which the trigger is defined within the trigger statement to prevent
recursive triggers and potential infinite loops. It is recommended to perform
any necessary modifications before or after the trigger execution.

	● Data Manipulation Language (DML) Statements: Some database
management systems (DBMSs) impose restrictions on specific data
manipulation operations within a trigger. For instance, an UPDATE trigger
may be limited from performing additional UPDATE statements on the same
table. This restriction helps maintain data integrity and prevent conflicts or
inconsistencies.

	● Transaction Control Statements: Transaction control statements like
COMMIT or ROLLBACK may have limited or no functionality within a trigger.
This is because triggers are typically executed within the context of a larger
transaction, and modifying the transaction state within a trigger can lead to
unpredictable outcomes.

	● Recursive Trigger Execution: Recursive triggers occur when a trigger action
on a table triggers another trigger on the same table. Most DBMSs have
mechanisms in place to control or prevent recursive triggers to avoid infinite
loops and potential performance issues.

CHECK YOUR PROGRESS

19.	 Triggers can be nested, with one trigger invoking another trigger.
� [True/False]

20.	 Triggers can be used to perform _______ checks and cancel the execution of
the triggering event.

21.	 Triggers can _____ and _____ data in other tables not directly involved in the
triggering event.

Activity

Search any schema freely available on online resources. Create a specific scenarios
or requirements for which triggers will be helpful. Design and write appropriate
trigger that satisfies the given scenario. Present your trigger implementation to
the class. Facilitate a discussion by asking questions and clarify the doubts or
confusion related to triggers.

NOTES

11

	● Modifying the Triggering Table: It is generally advised to avoid modifying the
table on which the trigger is defined within the trigger statement to prevent
recursive triggers and potential infinite loops. It is recommended to perform
any necessary modifications before or after the trigger execution.

	● Data Manipulation Language (DML) Statements: Some database
management systems (DBMSs) impose restrictions on specific data
manipulation operations within a trigger. For instance, an UPDATE trigger
may be limited from performing additional UPDATE statements on the same
table. This restriction helps maintain data integrity and prevent conflicts or
inconsistencies.

	● Transaction Control Statements: Transaction control statements like
COMMIT or ROLLBACK may have limited or no functionality within a trigger.
This is because triggers are typically executed within the context of a larger
transaction, and modifying the transaction state within a trigger can lead to
unpredictable outcomes.

	● Recursive Trigger Execution: Recursive triggers occur when a trigger action
on a table triggers another trigger on the same table. Most DBMSs have
mechanisms in place to control or prevent recursive triggers to avoid infinite
loops and potential performance issues.

CHECK YOUR PROGRESS

19.	 Triggers can be nested, with one trigger invoking another trigger.
� [True/False]

20.	 Triggers can be used to perform _______ checks and cancel the execution of
the triggering event.

21.	 Triggers can _____ and _____ data in other tables not directly involved in the
triggering event.

Activity

Search any schema freely available on online resources. Create a specific scenarios
or requirements for which triggers will be helpful. Design and write appropriate
trigger that satisfies the given scenario. Present your trigger implementation to
the class. Facilitate a discussion by asking questions and clarify the doubts or
confusion related to triggers.

NOTES

12

5.7
Types of Triggers

Disabling triggers:

Disabling triggers involves suspending or deactivating the execution of a trigger in
a database management system (DBMS). When a trigger is disabled, it will not be
triggered or executed, even if the associated event occurs.

The process of disabling triggers may vary depending on the specific DBMS being
used, but it typically involves executing a command or modifying the trigger’s
status.

Identify the trigger
Execute the Disable

command
Verify the trigger

status

Fig 7: Process of disabling triggers

	● Identify the Trigger: Determine the name of
the trigger that needs to be disabled.

	● Execute the Disable Command: Utilize the
appropriate syntax or command provided by
your specific DBMS to disable the trigger.
The exact command may differ based on the
DBMS in use. For instance, in Oracle, the
ALTER TRIGGER statement with the DISABLE
keyword is employed.

	● Verify the Trigger Status: After executing the
disable command, verify that the trigger is now disabled. This can be done by
checking the trigger’s status in the DBMS’s metadata or trigger management
system.

CHECK YOUR PROGRESS

22.	 Enabling and disabling triggers can be performed on both row-level and
_______ triggers.

23.	 Disabling a trigger temporarily _______ its execution until it is enabled again.

24.	 A disabled trigger can still be modified or altered.� [True/False]

25.	 Enabling a trigger can only be done during the database creation process.
� [True/False]

26.	 A database application is experiencing performance issues during a large
data import process. The application uses triggers on the target table to
perform certain calculations and validations. To improve performance, the
triggers need to be temporarily deactivated during the import process. How
can the triggers be disabled in this scenario?

STUDY NOTE

Disabling triggers are
beneficial in temporarily
suspending trigger
execution during
maintenance activities,
or troubleshooting
processes.

Triggers are classified into two categories:

Triggers

Disabling
triggers

Enabling
triggers

Fig 5: Types of Triggers

Enabling triggers:

Enabling triggers involves activating or allowing a trigger to be triggered by a specific
event in a database management system (DBMS). Enabling a trigger makes it
active and causes it to execute when the associated event occurs.

The process of enabling triggers may vary depending on the DBMS used, but it
typically involves executing a specific command or modifying the trigger’s status.

Identify the trigger
Execute the Enable

command
Verify the trigger

status

Fig 6: Process of enabling triggers

	● Identify the trigger: Determine the name of the trigger that needs to be
enabled.

	● Execute the Enable Command: Utilize the appropriate syntax or command
provided by your specific DBMS to enable the trigger. The exact command may
differ based on the DBMS in use. For example, in Oracle, the ALTER TRIGGER
statement with the ENABLE keyword is used.

	● Verify the Trigger Status: After executing the enable command, verify that the
trigger is now enabled. This can be done by checking the trigger’s status in the
DBMS’s metadata or trigger management system.

Enabling triggers permits them to resume their functionality and respond to the
designated event within the database.

NOTES

13

Disabling triggers:

Disabling triggers involves suspending or deactivating the execution of a trigger in
a database management system (DBMS). When a trigger is disabled, it will not be
triggered or executed, even if the associated event occurs.

The process of disabling triggers may vary depending on the specific DBMS being
used, but it typically involves executing a command or modifying the trigger’s
status.

Identify the trigger
Execute the Disable

command
Verify the trigger

status

Fig 7: Process of disabling triggers

	● Identify the Trigger: Determine the name of
the trigger that needs to be disabled.

	● Execute the Disable Command: Utilize the
appropriate syntax or command provided by
your specific DBMS to disable the trigger.
The exact command may differ based on the
DBMS in use. For instance, in Oracle, the
ALTER TRIGGER statement with the DISABLE
keyword is employed.

	● Verify the Trigger Status: After executing the
disable command, verify that the trigger is now disabled. This can be done by
checking the trigger’s status in the DBMS’s metadata or trigger management
system.

CHECK YOUR PROGRESS

22.	 Enabling and disabling triggers can be performed on both row-level and
_______ triggers.

23.	 Disabling a trigger temporarily _______ its execution until it is enabled again.

24.	 A disabled trigger can still be modified or altered.� [True/False]

25.	 Enabling a trigger can only be done during the database creation process.
� [True/False]

26.	 A database application is experiencing performance issues during a large
data import process. The application uses triggers on the target table to
perform certain calculations and validations. To improve performance, the
triggers need to be temporarily deactivated during the import process. How
can the triggers be disabled in this scenario?

STUDY NOTE

Disabling triggers are
beneficial in temporarily
suspending trigger
execution during
maintenance activities,
or troubleshooting
processes.

NOTES

14

5.8
Summary

	● Cursors are used for processing query results in a procedural manner.

	● Cursors allow for fetching and manipulating individual rows of data from a result
set.

	● Cursor variables, whether constrained or unconstrained, provide flexibility in
handling query results.

	● Cursor For Loops are a convenient way to iterate over cursor results without
the need for explicit cursor operations like opening, fetching, and closing.

	● Triggers are event-driven procedures that automatically execute in response to
specific events in a database, allowing for the enforcement of business rules,
data integrity maintenance, and additional actions or validations.

	● Triggers can have both before and after execution options.

	● Enabling and disabling triggers provides control over their functionality.

	● Understanding and effectively using triggers and cursors can greatly enhance
the functionality and performance of database applications.

	● Triggers and cursors provide mechanisms for automating tasks, maintaining
data integrity, and processing query results. By leveraging these features,
developers can build robust and efficient database solutions.

5.9
Case Study

Flipkart’s Order Management System and Triggers

Flipkart is one of the leading e-commerce companies in India, known for its vast range
of products and efficient order management system. In their order management
system, Flipkart utilizes triggers in their database management system to ensure
smooth order processing, inventory management, and customer satisfaction.

Flipkart’s order management system handles a large volume of orders from
customers across the country. To maintain efficient order fulfilment, it is crucial for
Flipkart to have real-time inventory updates, track order status, and manage any
changes or cancellations promptly. Triggers play a vital role in automating these
processes and maintaining data consistency.

NOTES

15

Trigger Implementation:

Inventory Management:

	● Trigger Scenario: When a customer places an order, the inventory needs to be
automatically updated to reflect the reduction in available stock.

	● Trigger Implementation: Flipkart’s database system is designed with a trigger
that fires on each order placement. The trigger updates the inventory table
by deducting the ordered quantity from the corresponding product’s available
stock. This ensures accurate inventory tracking and prevents overselling.

Order Status Updates:

	● Trigger Scenario: When an order is marked as shipped, the customer should
receive a notification with the updated status.

	● Trigger Implementation: Flipkart employs a trigger that fires when an order’s
status is updated to “shipped.” The trigger automatically sends an email or
notification to the customer, providing them with the shipping details and
confirming the shipment. This proactive communication keeps customers
informed and enhances their overall experience.

Order Cancellation and Refunds:

	● Trigger Scenario: When an order is cancelled, the inventory should be
replenished, and the customer should be promptly refunded.

	● Trigger Implementation: Flipkart’s order management system includes
triggers that activate when an order cancellation occurs. These triggers
update the inventory by adding the cancelled quantity back to the available
stock. Additionally, the trigger initiates the refund process by triggering the
necessary financial transactions, ensuring that the customer receives their
refund promptly.

Benefits and Impact:

	● Real-time inventory updates: By using triggers, Flipkart ensures that the
inventory is accurately reflected in the database, minimizing the chances of
overselling or stockouts.

	● Enhanced customer experience: Triggers facilitate timely order status updates
and automatic notifications, keeping customers informed about their orders’
progress.

	● Efficient order processing: Triggers automate various processes such as
inventory updates and order cancellations, reducing manual intervention and
ensuring smooth order management.

Flipkart’s effective utilization of triggers in their order management system
showcases the significance of automation and data consistency in the e-commerce
industry. By implementing triggers, Flipkart streamlines their processes, provides
accurate inventory information, and enhances customer satisfaction. This case
study demonstrates the practical application of triggers in a real-life scenario within
an Indian company’s database management system.

NOTES

16

Questions:

1.	 How do triggers in Flipkart’s order management system contribute to
maintaining accurate inventory levels? Explain the specific trigger scenario and
implementation that ensures inventory updates are reflected in real-time.

2.	 Analyse the impact of triggers on customer experience in Flipkart’s order
management system. How does the trigger-based order status update and
notification process enhance customer satisfaction? Discuss the benefits of
proactive communication and timely updates.

3.	 Evaluate the efficiency of triggers in Flipkart’s order cancellation and refund
process. How do triggers automate inventory replenishment and initiate the
refund process when an order is cancelled? Discuss the benefits of trigger-
based automation in handling order cancellations and ensuring prompt
refunds.

5.10
Terminal Questions

SHORT ANSWER QUESTIONS

1.	 Write a trigger to count number of new tuples inserted using each insert
statement.

2.	 Write the query to update a table by increasing the salary of each employee
by 1500. After the update, the SQL%ROWCOUNT attribute is used to find out
how many rows were affected by the operation.

3.	 Declare a cursor named “CustomerCursor” to fetch the customer ID and total
purchase amount from the “Orders” table for the year 2022.

LONG ANSWER QUESTIONS

1.	 A large company wants to implement an employee performance evaluation
system to track and assess the performance of its employees. The system
should automatically calculate performance metrics based on various factors
such as attendance, task completion, and customer feedback. Additionally, the
system should generate reports for managers and HR personnel to review
and make informed decisions. To address the requirements of the company,
a combination of cursors and triggers can be utilized. Create a trigger named
“AttendanceTrigger” that fires after an attendance record is inserted into the
“Attendance” table.

2.	 In the above scenario, implement a cursor named “PerformanceEvaluationCursor”
that retrieves employee records from the “Employees” table. The cursor can

NOTES

17

calculate the overall performance score for each employee by aggregating
the scores from the triggers fired on attendance, task completion, and
customer feedback. Generate a performance report using the cursor,
providing managers and HR personnel with an overview of each employee’s
performance metrics.

MCQ QUESTIONS

1.	 You are developing a payroll system for a company that needs to calculate
monthly bonuses for employees based on their sales performance. The system
should iterate through the sales records and calculate the bonus amount for
each employee. Which of the following is the most appropriate method to
achieve this?

	 a)	� Using a cursor to iterate through the sales records and calculate bonuses
for each employee.

	 b)	� Using a scalar function to calculate bonuses for all employees in a single
query.

	 c)	� Using a temporary table to store the sales records and calculate bonuses
using set-based operations.

	 d)	� Using a subquery to calculate bonuses for each employee in the main
payroll query.

2.	 You are working on a database migration project where you need to transfer
data from an old database table to a new one. The data in the old table needs to
be transformed and validated before being inserted into the new table. Which
of the following is the most suitable approach for this task?

	 a)	� Using a trigger to automatically transform and validate the data during the
insertion process.

	 b)	� Using a bulk insert statement to transfer the data from the old table to the
new table.

	 c)	� Using a cursor to fetch and transform the data row by row, and then insert
into the new table.

	 d)	� Using a stored procedure to handle the transformation and validation of
data before inserting into the new table.

3.	 You are developing a system that needs to process a large volume of data in
batches. Each batch requires complex calculations and updates based on the
data. Which of the following options is the most appropriate for this scenario?

	 a)	� Using a cursor to iterate through each batch and perform the necessary
calculations and updates.

	 b)	� Using a stored procedure with a loop to process each batch of data.

	 c)	� Using a trigger to automatically process each batch of data as it is inserted
into the database.

	 d)	� Using a set-based operation to process the entire data at once without
using cursors.

NOTES

18

4.	 You are working on a database application for an e-commerce company.
Whenever a new order is placed, the system needs to automatically update
the inventory quantity for the corresponding products. Which of the following
is the most appropriate approach to achieve this?

	 a)	� Using a trigger to update the inventory quantity after each order insertion.

	 b)	� Using a stored procedure to update the inventory quantity in a batch
process.

	 c)	� Using a scheduled job to update the inventory quantity at regular intervals.

	 d)	� Using an application code to manually update the inventory quantity after
each order.

5.	 You are developing a system to maintain an audit trail for a critical database
table. Whenever a record is inserted, updated, or deleted in the table, a log
entry needs to be added to the audit trail table. Which of the following is the
most appropriate approach for achieving this requirement?

	 a)	� Using triggers to automatically insert log entries into the audit trail table.

	 b)	� Using stored procedures to handle the insertion of log entries.

	 c)	� Using application code to manually insert log entries after each data
modification.

	 d)	� Using a scheduled job to periodically scan the table and insert log entries.

6.	 You are developing a database application for a hospital that needs to track and
manage patient appointments. Whenever a new appointment is scheduled, the
system should automatically update the doctor’s schedule by deducting the
allocated time slot. Which of the following is the most appropriate approach to
achieve this?

	 a)	� Using a trigger to update the doctor’s schedule after each appointment
insertion.

	 b)	� Using a cursor to iterate through the appointments and update the doctor’s
schedule.

	 c)	� Using a combination of a trigger and a cursor to ensure accurate updates in
real-time.

	 d)	� Using a stored procedure to handle the updating of the doctor’s schedule.

7.	 In SQL, which command is used to enable/disable a database trigger?

	 a)	� ALTER TABLE

	 b)	� MODIFY TRIGGER

	 c)	� ALTER DATABASE

	 d)	� ALTER TRIGGER

8.	 Select the incorrect statement:

	 a)	� We should use cursor in all cases

	 b)	� A static cursor can move forward and backward direction

	 c)	� A forward only cursor is the fastest cursor

	 d)	� All of the mentioned

NOTES

19

9.	 Programmers cannot control the _______ cursors and the information in it.

	 a)	� Implicit	 b)	� Explicit

	 c)	� Both a and b	 d)	� None

10.	Which attribute returns TRUE if an INSERT, UPDATE, or DELETE statement
affected one or more rows?

	 a)	� %NOTFOUND	 b)	� %ISOPEN

	 c)	� %ROWCOUNT	 d)	� %FOUND

11.	 You are developing a reporting system for a company that requires generating
monthly sales reports for different regions. The reports should include sales
data for a specific region based on user input. Which of the following is the
most appropriate approach to achieve this?

	 a)	� Using a parametric cursor to retrieve sales data for the specified region.

	 b)	� Using a scalar function to calculate and retrieve sales data for the specified
region.

	 c)	� Using a temporary table to store sales data and filter it based on the
specified region.

	 d)	� Using a subquery to retrieve sales data for the specified region in the main
report query.

12.	You are developing a payroll system for a company. You need to process
employee payroll data in batches of 100 employees at a time due to system
constraints. Which type of cursor would be most suitable for this task?

	 a)	� Unconstrained cursor	 b)	� Constrained cursor

	 c)	� Forward-only cursor	 d)	� Dynamic cursor

13.	You are developing a data analysis tool that requires iterating through a result
set multiple times to perform complex calculations and aggregations. The tool
needs the flexibility to move backward and forward within the result set. Which
type of cursor would be most suitable for this requirement?

	 a)	� Constrained cursor	 b)	� Unconstrained cursor

	 c)	� Forward-only cursor	 d)	� Dynamic cursor

14.	You are working on a customer management system that requires sending a
welcome email to new customers upon their registration. Which part of the
trigger contains the logic for sending the email?

	 a)	� Trigger event	 b)	� Trigger body

	 c)	� Trigger action	 d)	� Trigger condition

15.	You are developing a database application that requires updating a column value
whenever a specific condition is met. However, you want to ensure that the
trigger cannot modify other columns in the same table. Which trigger restriction
can you use to achieve this?

	 a)	� INSERT restriction	 b)	� UPDATE restriction

	 c)	� DELETE restriction	 d)	� REFERENTIAL constraint

NOTES

20

5.11
Answers

CHECK YOUR PROGRESS

1.	 Explicit

2.	 Procedural

3.	 Parameters

4.	 Fetch and manipulate

5.	 Result set

6.	 False

7.	 False

8.	 True

9.	 Constrained Cursor Variable

10.	 Executing

11.	 False

12.	 True

13.	 To be solved by student

14.	 False

15.	 True

16.	 False

17.	 SQL

18.	 Multiple

19.	 True

20.	 Validation

21.	 Access, modify

22.	 Statement-level

23.	 Suspends

24.	 True

25.	 False

26.	 To be solved by student

SHORT ANSWER QUESTIONS

1.	 Declare count int

Set count=0;

delimiter $$

CREATE TRIGGER Count_tupples

 AFTER INSERT ON employee

FOR EACH ROW

BEGIN

SET count = count + 1;

END; $$

delimiter;

2.	 DECLARE

 total_rows number;

BEGIN

 UPDATE Emp

 SET Salary = Salary + 1500;

 total_rows := SQL%ROWCOUNT;

 dbms_output.put_line(total_rows || ‘ rows updated.’);

END;

NOTES

21

3.	 DECLARE CustomerCursor CURSOR FOR
SELECT CustomerID, SUM(TotalAmount) AS TotalPurchaseA-

mount

FROM Orders

WHERE YEAR(OrderDate) = 2022

GROUP BY CustomerID;

OPEN CustomerCursor;

DECLARE @CustomerID INT;

DECLARE @TotalPurchaseAmount DECIMAL(10, 2);

FETCH NEXT FROM CustomerCursor INTO @CustomerID, @Total-

PurchaseAmount;

WHILE @@FETCH_STATUS = 0

BEGIN

 -- Process the fetched data here

 PRINT ‘CustomerID: ‘ + CAST(@CustomerID AS VARCHAR) +

‘, Total Purchase Amount: ‘ + CAST(@TotalPurchaseAmount

AS VARCHAR);

 FETCH NEXT FROM CustomerCursor INTO @CustomerID, @

TotalPurchaseAmount;

END;

CLOSE CustomerCursor;

DEALLOCATE CustomerCursor;

LONG ANSWER QUESTIONS

1.	 The “AttendanceTrigger” can be implemented as follows:
CREATE TRIGGER AttendanceTrigger

AFTER INSERT ON Attendance

FOR EACH ROW

BEGIN

 -- Perform necessary calculations and updates based

on the attendance record

 -- Update performance metrics or any other relevant

data

 -- Generate reports or trigger further actions if

needed

END;

The trigger will be executed after an attendance record is inserted into the
“Attendance” table. Within the trigger body, you can perform calculations
and updates based on the attendance record, such as updating performance
metrics or any other relevant data. Additionally, you can generate reports or
trigger further actions as required by the system. This trigger allows for the
automatic calculation and tracking of employee performance based on their
attendance records.

NOTES

22

2.	 -- Create the PerformanceEvaluationCursor

DECLARE @EmployeeID INT, @OverallPerformance DECIMAL(10,

2);

DECLARE PerformanceEvaluationCursor CURSOR FOR

SELECT EmployeeID

FROM Employees;

OPEN PerformanceEvaluationCursor;

FETCH NEXT FROM PerformanceEvaluationCursor INTO @Employ-

eeID;

-- Declare variables to store aggregated scores

DECLARE @AttendanceScore DECIMAL(10, 2), @TaskCompletion-

Score DECIMAL(10, 2), @FeedbackScore DECIMAL(10, 2);

-- Declare variables for performance report

DECLARE @EmployeeName VARCHAR(50), @PerformanceReport

NVARCHAR(MAX) = ‘’;

WHILE @@FETCH_STATUS = 0

BEGIN

 -- Reset aggregated scores for each employee

 SET @AttendanceScore = 0;

 SET @TaskCompletionScore = 0;

 SET @FeedbackScore = 0;

 -- Calculate attendance score

 -- Implement the AttendanceTrigger logic here to cal-

culate and update the @AttendanceScore variable

 -- Calculate task completion score

 -- Implement the TaskCompletionTrigger logic here to

calculate and update the @TaskCompletionScore variable

 -- Calculate feedback score

 -- Implement the CustomerFeedbackTrigger logic here

to calculate and update the @FeedbackScore variable

 -- Calculate overall performance score

 SET @OverallPerformance = (@AttendanceScore + @Task-

CompletionScore + @FeedbackScore) / 3;

 -- Retrieve employee name

 SELECT @EmployeeName = EmployeeName

 FROM Employees

 WHERE EmployeeID = @EmployeeID;

 -- Build the performance report

 SET @PerformanceReport = @PerformanceReport + ‘Em-

ployee Name: ‘ + @EmployeeName + CHAR(13) +

 ‘Overall Performance Score: ‘ + CAST(@OverallPer-

formance AS VARCHAR(10)) + CHAR(13) + CHAR(13);

 FETCH NEXT FROM PerformanceEvaluationCursor INTO @

EmployeeID;

END;

NOTES

23

CLOSE PerformanceEvaluationCursor;

DEALLOCATE PerformanceEvaluationCursor;

-- Print or return the performance report

PRINT @PerformanceReport;

MCQS ANSWERS

1.	 a)	� Using a cursor to iterate through the sales records and calculate bonuses
for each employee.

2.	 c)	� Using a cursor to fetch and transform the data row by row, and then insert
into the new table.

3.	 b)	� Using a stored procedure with a loop to process each batch of data.

4.	 a)	� Using a trigger to update the inventory quantity after each order insertion.

5.	 a)	� Using triggers to automatically insert log entries into the audit trail table.

6.	 c)	� Using a combination of a trigger and a cursor to ensure accurate updates in
real-time.

7.	 d)	� ALTER TRIGGER

8.	 a)	� We should use cursor in all cases

9.	 a)	� Implicit

10.	 d)	� %FOUND

11.	 a)	� Using a parametric cursor to retrieve sales data for the specified region.

12.	 b)	� Constrained cursor

13.	 b)	� Unconstrained cursor

14.	 c)	� Trigger action

15.	 b)	� UPDATE restriction

5.12
Assignment

MULTIPLE CHOICE QUESTIONS

1.	 What is the purpose of the trigger body in the trigger syntax?

	 a)	 To define the trigger event

	 b)	 To specify the table on which the trigger operates

	 c)	 To define the actions to be performed when the trigger is fired

	 d)	 To specify the condition for the trigger execution

NOTES

24

2.	 Which type of cursor is more suitable when you need fine-grained control over
the cursor operations, such as explicit opening, fetching, and closing?

	 a)	 Implicit cursor	 b)	 Explicit cursor

	 c)	 Constrained cursor	 d)	 Unconstrained cursor

3.	 Which type of cursor is automatically created and managed by the database
engine without the need for explicit declaration and control?

	 a)	 Implicit cursor

	 b)	 Explicit cursor

	 c)	 Constrained cursor

	 d)	 Unconstrained cursor

4.	 You have developed a trigger that validates the data entered into a table and
prevents invalid records from being inserted. However, after thorough testing,
you realize that the trigger is causing performance issues. What can you do to
improve performance without removing the trigger altogether?

	 a)	 Enable the trigger	 b)	 Disable the trigger

	 c)	 Modify the trigger	 d)	 Delete the trigger

5.	 You have implemented a trigger that updates a denormalized table whenever
changes occur in a related table. Due to certain business requirements, you
need to re-enable the trigger after it has been disabled. Which action should
you take to accomplish this?

	 a)	 Enable the trigger	 b)	 Disable the trigger

	 c)	 Modify the trigger	 d)	 Delete the trigger

QUESTIONS

1.	 Create a trigger named “UpdateStockTrigger” that fires after an insert into the
“Orders” table and updates the stock quantity in the “Products” table based
on the quantity of items ordered.

2.	 You are writing a stored procedure that retrieves data from multiple tables with
complex join conditions and calculations. The result set structure is fixed and
known in advance. Which type of cursor variable would you choose? Explain
the reason for your choice.

3.	 How would you create a cursor to retrieve the customer name and total orders
for customers who have placed more than 5 orders?

4.	 How would you write a trigger to update the total order amount in the “Orders”
table after an insert or update operation on the “OrderItems” table?

5.	 Define a trigger named “AuditLogTrigger” that fires after a delete on the
“Employees” table and inserts a record into the “AuditLog” table to track the
deleted employee details.

NOTES

25

5.13
References

Books:

	● https://www.google.co.in/books/edition/SQL_in_a_Nutshell/J1hcTQB3JbcC
?hl=en&gbpv=1&dq=triggers+in+DBMS&printsec=frontcover

	● https://www.google.co.in/books/edition/Oracle_PL_SQL_Programming/47W
zweLc0uAC?hl=en&gbpv=1&dq=triggers+in+DBMS&printsec=frontcover

Web References:

	● https://www.javatpoint.com/cursor-in-sql

	● https://www.geeksforgeeks.org/cursors-in-pl-sql/

	● https://www.geeksforgeeks.org/sql-triggers/

